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Ever since the hard sphere model was invented by
Enskog in 1922, the study of liquid dynamics has been
focused on the mathematically intractable problem of
the geometrical constraints of hard sphere motion.  The
study of physically-realistic liquids has been ignored,
to the extent that there still
does not exist a theory of the
motion of atoms in a liquid.
What is needed is a Hamil-
tonian, approximately solv-
able for its energy levels, a
partition function which
sums these energy levels, and
a comparison of the corre-
sponding theoretical free en-
ergy with the equilibrium
thermodynamic properties of
liquids.  We have carried out
this program for classical
monatomic liquids.  The theo-
retical development is based
on two important experimen-
tal properties of elemental liq-
uids, together with an analy-
sis of the many-particle con-
figuration space inhabited by
the liquid state.  The theory
gives back an excellent ac-
count of the equilibrium prop-
erties of elemental liquids, and is capable of application
to nonequilibrium processes.

The liquid state of an element has the same theoretical
description, whether the liquid evolves from the crys-
tal by the normal melting process, or by anomalous
melting.  However, since we are going to infer liquid
properties from information on the melting process, it
is essential to recognize the existence of these two
melting categories.  Here is a summary of our published
findings on the melting of elements.

(a) In normal melting there is no significant change
in the electronic structure as, for example, metal crys-
tal to metal liquid.  Experimental data for the entropy
of melting at constant density lie in a very narrow range,
with mean and variance given by ∆S = 0.80 ± 0.10 Nk,

for N atoms.  We have con-
cluded that the liquid con-
tains a universal disordering
entropy of 0.80 Nk, relative
to the crystal.

(b) In anomalous
melting, there is a signifi-
cant change in the elec-
tronic structure, as for ex-
ample polar crystal to metal
liquid.  The entropy of melt-
ing at constant density is
much higher than the nor-
mal value, being 1.48 – 3.85
Nk for the anomalous ele-
ments we have analyzed,
and apparently contains the
normal contribution, plus
an amount due mostly to the
increase in potential energy
in going to the new elec-
tronic structure.

Since practically all the ex-
perimental complications are exhibited by the relatively
few anomalous melting elements, we explicitly omit
those elements from the following data analysis.

The second important experimental property is the
ion motional contribution CI  to the specific heat at
constant volume.  The nearly-universal behavior of
the elements is CI ≈ 3Nk  for both crystal and liquid at
melt.  Since we know in general that CI   is 3Nk for 3N
independent harmonic oscillators and, in particular,

Figure 1:  Entropy of mercury as function of
temperature at constant density.  Solid line is
theory, including the nearly-free-electron con-
tribution, and symbols are experimental data.
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that lattice dynamics provides an excellent theory of
ion motion in crystals in terms of 3N independent har-
monic oscillators, we assume the ion motion in elemen-
tal liquids can be resolved to good approximation into
3N independent harmonic oscillators.  This implies the
ion motion is mainly confined within one or more nearly
harmonic valleys in the potential energy surface.

The equilibrium configuration of ions at the bottom of
a potential valley is called a “structure.”  At the lowest
energies lie a few crystalline structures, which are the
basis of lattice dynamics theory.  Structures without
long range order are commonly called amorphous, and
here it is necessary to divide these into two classes.

(a) Symmetric structures have a remnant of crys-
talline symmetry in their nearest-neighbor configura-
tions, have a broad distribution of energies, and are rela-
tively few in number.

(b) Random structures have a random distribution
of nearest-neighbor configurations, they are by far the
most numerous structures, and hence dominate the sta-
tistical mechanics of the liquid state.  Furthermore, mac-
roscopic averages such as the structure potential en-
ergy, and the set of normal mode frequencies, become
the same for all random structures in the large-N limit.

The Hamiltonian describing the ion motion when the
system is within the valley of any random structure is
the sum of three terms: the structure potential energy, a
set of 3N harmonic normal modes, and a correction term
representing anharmonicity and the valley boundary
condition.  The anharmonic and boundary effects are
small, and the partition function and free energy are
easily evaluated in the quasiharmonic approximation.
Now since the random structures all have the same
potential energy, their valleys are all accessible to the
liquid, and if their number is wN, their multiplicity yields
an entropy of Nk ln w.  We identify this as the univer-
sal disordering entropy of liquid relative to crystal, of
magnitude 0.80 Nk, hence we have ln w = 0.80, and
the number of random structures in configuration
space is counted.

In the quasiharmonic approximation, thermodynamic
functions of liquids are expressed by formulas with-
out adjustable parameters.  For all normal-melting el-
ements for which we can evaluate the theoretical

expressions, agreement with experiment is excellent.
The comparison of theory and experiment for the
entropy of liquid mercury to high temperatures is
shown in Figure 1.

Liquid dynamics is potentially as useful for liquids as
is lattice dynamics for crystals, and we plan to con-
tinue the development of the present theory.


